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Two-wave mixing on the cubic non-linearity 
in the smectic A liquid crystals 

by G. F. KVENTSEL* and B. I. LEMBRIKOV 
Department of Chemistry, Technion-Israel Institute of Technology, 

32000 Haifa, Israel 

(Received 18 January 1993; accepted 21 June 1993) 

We present a theoretical study of two-wave mixing in smectic A liquid crystals 
(S,LC) due to the resonant interaction of the electromagnetic (EM) waves through 
the second sound (SS), which is a new type of the cubic non-linearity. It is shown that 
a parametric amplification of one EM wave by the other occurs. Explicit expressions 
for the EM and SS wave amplitudes are obtained, which appear to be of the kink 
and transverse spatial soliton form, respectively. It is also shown that the SS wave 
creates flexoelectric polarization and space charge. The estimated gain is one or two 
orders of magnitude greater than the gain for the stimulated Brillouin scattering in 
isotropic organic liquids. The theoretical results obtained may be used as a basis for 
an experimental investigation of SS high frequency behaviour. 

1. Introduction 
The non-linear optics of smectic A liquid crystals (SALC) have not been sufficiently 

studied so far, especially in comparison with the non-linear optics of nematic liquid 
crystals (NLC) [l-31. The unique properties of SALCS, which are viscous fluids with a 
layered structure [4-61, give rise to a specific kind of optical non-linearity connected 
with the so-called second sound (SS). SS is the propagating mode due to the smectic 
layer deformations [4-9,16-19]. SS is the macroscopic manifestation of the oscillations 
of the phase of the smectic order parameter. This phase is proportional to the layer 
displacement u(r, t )  along the normal to the layers, which is conventionally chosen to be 
the z axis [6-91. Unlike normal sound, SS propagates without a change of mass density 
[4-9,10-13]. 

The dispersion relation of SS has the form [4] 

where R, k,, k,,, k,, are the SS frequency, wave vector and its components along 
and normal to the layers, respectively; B is the elastic constant corresponding to the 
layer compression, p is the mass density of the S,LC. It is known [4,6,9,14,15] that 
B -  108ergcm-3 and p- 1 g ~ m - ~ .  The SS velocity 

is much lower than the ordinary sound velocity [6,14]. It is seen from (1) that a SS 
propagating mode may exist only if k, is oblique to the layers. Otherwise the SS mode 
degenerates into a purely dissipative over damped mode [4]. Experimentally, SS was 
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160 G. F. Kventsel and B. I. Lembrikov 

first observed in elastic Brillouin scattering from monodomain samples of SALCs [16]. 
It was then investigated by ultrasound methods [17-191 and by means of Rayleigh 
scattering and the ‘interdigital electrodes technique’ [ 14,151. 

It is well-known that every kind of light scattering can become stimulated, if the 
pump intensity is sufficiently high [20]. As a consequence of the fact that B is much 
smaller than the elastic constant corresponding to bulk compression [4,6], stimulated 
Brillouin light scattering on SS in SALCS is expected to occur at a lower level of 
pumping. Attempts have been made to consider theoretically the possible non-linear 
optical effects in SALCs [21-24,25,26]. The studies [23,25] have been concerned with 
the case characterized by 

au 
aZ k,,=O, -=o 

in which there has been no SS. 
The situation was also analysed when the non-linearity of SALCs was determined 

by the thermal and mass density oscillations, while layer deformations were ignored 
[26]. The opposite case, in which SS existed, while thermal oscillations and ordinary 
sound were ignored, was considered in [21,22,24]. Parametric amplification in the 
non-resonant case had been predicted [21]. The threshold of the stimulated scattering 
and the gain have been calculated for the case of non-vanishing light absorption in 
S,LCs with only one strong incident EM wave [22], using the constant pump 
approximation [20]. In the time-dependent case, the EM wave undergoes self- 
modulation and a SS soliton occurs, provided that the pumping is sufficiently strong 
[24]. It has been shown [21], that the SS and EM waves are strongly coupled when the 
EM waves propagate obliquely to the layers and their frequency shift 

A w - o , - o ,  

is of the order of (s/c)o,, where c is the vacuum light velocity, 0, is the EM wave 
frequency and Am is much smaller than either o1 or the other EM wave frequency, 0,. 

In this paper we consider two-wave mixing due to SS in SALCs in the resonant case, 
for which the difference between the frequencies of the two EM waves is equal to the SS 
frequency 

A 0  =a. (3) 
It is shown that parametric amplification of one EM wave by the other is possible. The 
kink states [28-301 of the coupled EM wave, SS wave and the small amplitude 
scattered harmonics may be excited. The gain at the resonant two-wave mixing due to 
SS in SALCS is one or two orders of magnitude larger than the one at the stimulated 
Brillouin scattering in isotropic organic liquids. The pump intensity applied may be 
much larger in SALCS than at the stimulated scattering on the orientational non- 
linearity in NLCs. The phenomenon considered in this paper is a new kind of two-wave 
mixing. SALCS may be characterized in the framework of the general approach [41] as 
a Kerr medium with a specific mechanism of the Kerr effect determined by the 
deformation of thc smectic layers, which results in a Brillouin-like stimulated light 
scattering. The stimulated SS gives rise to flexoelectric polarization and space charge. 

The analysis of the non-linear optical effects mentioned above is carried out using 
the Maxwell equations in the non-linear anisotropic and inhomogeneous medium and 
the equation of motion of the medium itself in the presence of the external EM field 
[31,20]. 
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Two-wave mixing in smectic A liquid crystals 161 

The non-linearity is taken into account by including the terms proportional to the 
normal and tangential layer deformations (au/axi) << 1 in the dielectric constant tensor 
Eik. These deformations turn out to be the small parameters of the problem. It should be 
noted that we do not use the constant pump approximation and linearized theory. 
Consequently, we obtained the distribution of both EM wave amplitudes in the general 
case. In the final part of the paper the results obtained are summarized. 

2. Resonant coupling of EM waves through the second sound in S,LCs 
Consider the bulk effect, assuming the sample to be infinite. Since the liquid crystals 

of interest are transparent [l], there is no heating due to light absorption and the 
temperature can be taken as constant. The dielectric constant tensor E i k  with the non- 
linear terms has the form [5] 

and (4) 

where 

We take for Eik its value at the optical frequency. According to the relationship (3), the 
frequency dispersion of the E~~ may be neglected. To analyse the non-linear optical 
process in a continuous inhomogeneous medium, we must find a self-consistent 
solution of the equations of motion of the non-linear medium and the Maxwell 
equations, with the non-linear polarization determined by the coupling between this 
medium and the external field [31,20]. In our case, the equations of motion are the 
hydrodynamic equations of SALCS with the EM field-dependent terms, while the non- 
linear polarization is determined by the inhomogeneous part of Eik. 

The free energy density of SALCS in the presence of the EM field Ei has the form 
~ 4 ~ 6 , 3 2 1  

where the term K (a2~/dx2)2 is neglected. The Frank constant K - (10- 7--10-6) dyn and 
therefore [4,6] 

The field-dependent terms in (5) are assumed to be averaged over the optical 
frequencies and only a slowly varying part remains [32,20,33]. The equations of the 
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162 G. F. Kventsel and B. I. Lembrikov 

incompressible SALCS hydrodynamics have the form [4-6,9] 
avi 
axi  
au at - U,? 

-=O, 

- 

au. ap aa:, 
p-L= --+g;+- 

at axi ' 

(7) 

d.=- -+- 
lk 2 ax, axi 

6 F  g =  -- 
6U' 

where ui is the hydrodynamic velocity, P is  the pressure, a;, is the viscosity stress tensor, 
ai are the Leslie coefficients, g is the generalized force density, 6,, = 0, i # k,  6 ,  = 1, i = k .  

Since u(r, t )  is determined as the layer displacement along the z axis [4-6,9], 

SALCs possesses D, symmetry, being rotationally symmetrical relative to the 
optical axis z,  which is normal to the layers [4]. We may therefore choose the 
coordinate system such that the xz  plane coincides with the plane of incidence of the 
EM wave. Nevertheless, for arbitrary polarization of the incident wave, the transverse 
component E ,  remains. In this paper, we consider the case in which all wave vectors 
belong to the xz  plane. Substituting the relationships (4), (5),  (9H12) into the system 
(6)<8), we obtain the equation of motion of S,LCs in the external electric field 
[21,341 

+t(C14+C156)V2V2 - 1: a4 
- PV2?+ at [ %- 

where 

E: = E: + E', . 
It is seen from (1 3) that, unlike the ordinary sound determined by the bulk compression 
[35], SS exists without mass density change. If the external field is absent and the 
viscosity term is omitted, we obtain the SS equation in the de Gennes approximation 
with the dispersion relation (1) [4]. The equation (13) contains third and fourth order 
spatial derivatives and fourth and fifth order mixed derivatives, while the equation 
describing Brillouin scattering on ordinary sound includes second order spatial and 
time derivatives and a third order mixed derivative [31,20]. The reason is that unlike 
solids or isotropic liquids, the system (6)-18) contains the specifically smectic equation 
(7). This equation expresses the continuity of the smectic layers, which means that 
permeation is neglected [14,15]. It is also seen from equation (13), that the EM waves 
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Two-wave mixing in smectic A liquid crystals 163 

must propagate obliquely to the layers, displaying a dependence on both x and z. 
Otherwise, the right hand side of (13) vanishes. This requirement is in accord with SS 
dispersion (1). The Maxwell equations for the non-linear inhomogeneous anisotropic 
medium yield the wave equation [31,20] 

where 
9; + gy = EikET, 

P Y I  << im, 
@, 97 are the linear and non-linear parts of the electric induction. 

finite number of Fourier components [31,20] 
In the two-wave mixing case the total electric field in S,LCs E'"', consists of a 

Et0'=El+E2+fl  +f2, ~ f l , 2 ~ < < ~ E l , 2 ~ .  (15) 

(16) 
where kl ,2  are the unit polarization vectors and wave vectors, respectively, C.C. 
means complex conjugation, and it is assumed that A1,2(r) are slowly varying 
[31,20,33] 

We take the incident waves in the form 

El ,2 = e 1,2 { A  1 , 2 0 9  exp i(k 1,2f - 0 1  ,A + c.c.>, 

IV2Ail << IkiVAil. (17) 
The time dependence of Ai may be neglected, since s<<c, and therefore A1,2  vary 
insignificantly during the time needed for light to traverse the interaction region [20]. 
We use the infinite plane-wave approximation [20], neglecting the transverse part of 
(VA,). Taking into account (4), (1 5), ( 1  7), we divide the equation (14) in the standard way 
[31,20,33] into linear and non-linear parts. In the linear approximation, we have for 
the incident wave El,2 the homogeneous system of linear algebraic equations [32] 

where 

&Z2 = &,,, &:x = E l .  

For uniaxial media such as S,LCs, the system (18) has two kinds of solution: 
extraordinary waves and ordinary waves [32]. The extraordinary waves have the 
dispersion relation [32] 

These waves are polarized in the incidence plane 

e",2 =(e1,2x, 07 e1 ,2r) .  

The ordinary waves have the dispersion relation [32] 
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164 G. F. Kventsel and B. I. Lembrikov 

and their polarization is normal to the the incidence plane 

e4,2=e4,2y= 1.  (22) 

(23) 

It is seen from equations (19H21) that for each frequency, four modes may be realized 

E- exp i [  k kxx +_ k,z -at]. 

(1)  k z x ,  k,z>O 

(2) k z x ,  k, ,  <o. 

We define as positive the directions k l x ,  k , ,  and consider the two cases 

(25) 

and 

Consider first of all the interaction of the extraordinary waves with the wave vectors 

(26) 

(24) 1 
k ; , z x  > 0, k; ,zz  > 0. 

Substituting (16) into (13) we obtain for the layer displacement u(r,t) 

u(r,t)= Uexp i{(k; - k”,r-(o, -w,)t} +c.c., 

where the asterisk denotes complex conjugation, 

and 

Combining the resonance condition (3) and the SS dispersion relation ( 1 )  we obtain 

where 

k,=k“,kk”,. 

Unlike ordinary Brillouin scattering, the relationships (3) and (28) give not only the 
frequency and wave vector conservation conditions, but also the selection rule for the 
directions of propagation of EM waves. The substitution of (28) into (27) yields 

The magnitude of k, may be determined using the cosine theorem 

k: = k: + k i  -2kIk2  cos 6, 

where 0 is the angle between k, and k, 

0=4h--(P2, 

where ‘pi,, are the angles between k1,, and the x axis, respectively. 
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Two-wave mixing in smectic A liquid crystals 165 

Substituting relationships (4), (16), (19), (26) and (29) into (14), separating the non- 
linear part, and neglecting V2A,,, according to the condition (17), we obtain the 
reduced equations for the slowly varying amplitudes 

A1.2 = lA1,2I exp iY1.2 

IFl ,2  = f? ,2  exp iC( kl  ,2  k k,)r - (w ,, k Q)tl+ C.C. 

(31) 

(32) 

as well as wave equations for the scattered harmonics 

3. Parametric amplification and Brillouin-like scatering 
The reduced equations for the amplitudes (31) and wave equations for the 

harmonics (32) have the form 

and 

where 

R =x cos a + z  sin a, 

11,2 = k',,,,sin a + k',,2xcosa-(k',,2e,,2) x sina+e,,,, cos a), 

%w1,2 * Q) = E J l , 2 m  w w 1 . 2  *Q)= E l l f I , Z e ,  

d, expi[(k, + ks)r-(wl +Q)t] +c.c., 

and 

d1,2z  = a IIkhe1,Zz - E a k 3 1 , 2 x .  

The angle a determines the direction along which the amplitudes are varying. For 
8<< 1, this angle determines the beam vector direction, which does not coincide with the 
wave vector in anisotropic media [32]: 

a=cpl+AO (36) 
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166 G. F. Kventsel and B. I. Lembrikov 

The angle Ad is sufficiently small since the optical anisotropy of S,LCs satisfies the 
condition [l] 

1 

El l  
-(Ell -E1)<< l .  

We shall consider the case in which the two incident waves El and E2 propagate in the 
direction close to parallel, i.e. 

Ad % 8 << 1. 
In this case the resonance condition (28) has the form 

The system (33)-(34) has the following solution 

y l , 2  =constant, 

where lo is the integral of motion. 

R, is the crossing-point, where 

I f  Am>O, p>O and we have 

for R-co and 

for R-t-oo. 
It is seen from relationships (41) and (44) that a parametric amplification of the 

signal EM wave E2 with the lower frequency w2 and the depletion of the pumping EM 
wave El with the higher frequency occur, while the SS wave plays a role of an idler wave 
[20]. The amplification and depletion of the respective EM waves take place mainly at 
the interval 1R-ROI<2/fl. Since we have taken into account the depletion of the 
pumping, the process of amplification reaches saturation at IR - R,I >>2/p. The stable 
states described by the relationships (41) are usually referred to as kinks [27,28,36]. 
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Two-wave mixing in smectic A liquid crystals 167 

Substituting (32) and (41) into ( 3 9 ,  we calculate the harmonics f,,,, taking into 
account only the particular solutions governed by the expressions on the right hand 
side of (35), since the frequencies ( w ~ , ~  &a) and wave vectors (k1,2 i- k,) cannot satisfy 
the homogeneous part of the equations ( 3 9 ,  and therefore homogeneous solutions in 
that case do not exist [3,10]. We have the following explicit expressions for the 
amplitudes f;,2: 

where 

The amplitudes have the form of spatial solitons [27,28,29] with symmetric 
maxima at the points Rl,2m 

(46) 
1 

R1,2m = R, TB In 2, 

while 

lf;,21+0 at R+ f co. 

Inserting (41) into (29) we obtain the SS wave amplitude 

(47) 

(48) 

The SS wave represents the transverse spatial soliton travelling in the direction of k,, 
which is approximately normal to the wave fronts of the coupled EM waved The 
width of the soliton (49) is 

2 
W=-, 

B 
and therefore the region in which the EM waves couple effectively is confined mainly to 
the interval near the crossing-point Ro 

2 
lR-R,/<-. 

B 
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168 G. F. Kventsel and B. I. Lembrikov 

A comparison of the expressions (45), (49) indicates that the scattered harmonics fl, ,  are 
localized in the same interval. The expressions (41), (45), (49) show that all the 
excitations are of the convective type, since they exist only within the non-linear 
medium [36]. It may be demonstrated that the coupling of ordinary waves would yield 
the same results for A, , , ,  U if we replaced Ex, E, by E,,  k” by k” and h by the expression 

ho = aiksz (50) 
in further relationships. 

The scattered harmonics would be polarized along the y axis, but they would keep 
the form of spatial solitons. The resonance condition (38) must be replaced by the 
relation 

IAml=- S O , , / ( E ~ )  - I@I sin 2q,, 
c 2 

since the dispersion relation (2 1) replaces relationship (19). 
Consider now the case in which 

ki,, k i z > O ,  kzm k,,<O. 
In this case the condition o<< 1 must be replaced by the condition 

n-o<< 1 (52) 

(53) 

(54) 

Then the wave E, and the SS wave u have the form 

E, = e2{A2(r) exp i(k,r +m,t) + c.c.}, 

u= Uexpi[(k, + k,)r-(ml -m,)t]+c.c. 

All further results would remain the same, if we replaced A;  by A ,  in the expression (27), 
transformed the second equation in the system (34) into the complex conjugate one for 
AT and introduced (-11,l) instead of l,, since now 1, < O .  In the resonance condition (28) 
we must use 

k,= kl  + k,. (55 )  

It should be noted that for parallel or antiparallel propagation (@= 0, n), the resonance 
condition (28) cannot be fulfilled. Indeed in such a case 

so that the left-hand side of (28) is proportional to (w,  -a2), while the right-hand side is 
proportional to 

s 

c 
-(ml -mz)<<(m1 -w,). 

It is clear from the relationship (42) that, in the resonant case, the gain f l  is determined 
by the frequency difference Am and SS time decay r, just as in the case of stimulated 
scattering in NLCs [3,23]. 

As shown in [4,5], the decay constant of the purely dissipative overdamped 
orientational mode in NLCs is 

Xk2 rNN-, 
f f i  
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Two-wave mixing in smectic A liquid crystals 169 

which is much shorter than the SS decay constant r. It is known that the low energy of 
the molecular reorientation in NLCs Xk2, determines the so-called giant optical non- 
linearity (GON) [3]; on the other hand, the small magnitude of Xk2 and rN limits the 
pumping level. In the case of SS-determined non-linearity in SALCS, there is no GON, 
but the pumping level may be much greater, since it is limited by the elastic constant B. 
We may conclude that the magnitude of the non-linearity in SALCS is intermediate 
between the GON in NLCs and the non-linearity determined by the bulk compression 
in solids or isotropic liquids. 

Introducing the intensity eLP according to [31,32,20] 

we may evaluate numerically the relative gain per unit intensity 
cm (MW)-' 

measured in 

Using typical values for the material parameters a,-(O.l-l)Poise [4,14,15], ~ , = 0 6  
[l] and choosing 6-0.1, w1 - 1015 Hz, we obtain 

B 
- - (0.1-1) cm (MW)- '. 
8 

This value of BiS is one or two orders of magnitude greater than the gain for the 
ordinary stimulated Brillouin scattering in isotropic organic liquids [20]. For the input 
intensity 8- 100 MW cmP2, we obtain the gain p-(lCLlOO)crn-' and the gain length 
L would be 

2 
L - ~ - (0.02-0-2) cm. 

This estimation is in a good agreement with the experimental data obtained by 
I.C. Khoo et al. [37]. 

B 

4. The light induced polarization, space charge and electric field 
In liquid crystals, a specific kind of polarization may exist which is connected with 

the orientational deformations-the so-called flexoelectric polarization [6,38,39]. In 
SALCs, the flexoelectric effect is determined by the layer deformation [7,38,39]. It has 
been shown theoretically and experimentally that SS may be excited in SALCS due to 
flexoelectric couplings, if an inhomogeneous high-frequency electric field is applied 
[14,15]. We show that the inverse effect may occur, when the SS wave (26), (27) 
governed by the interfering waves generates the flexoelectric polarization Pf,, space 
charge Q fe and electrostatic longitudinal wave Efe. 

P,, and Qfe have the form [7] 
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170 G. F. Kventsel and B. I .  Lembrikov 

and 

a3u d3u 
d X 2 a z  dz3 Q f e  = -div Pfe=(e{ +el)-----+ e{ -, (59) 

where e{* 2, are the flexoelectric coupling constants [7]. 
Substituting (26) and (49) into (58) ,  (59) we obtain 

P,,=I.(t> 2 - 4x& ho1w2 12)'12c2Awr [cosh$R-R,)]-' 

x [e3fk,,kSxx + (e{k,2, + ezfk?Jz] exp i(k,r -at) + c.c., (60) 

hw1o2 [ cosh p ( R  - R,)] - 
2 

Q f e = " o ( ~ )  4xp(1,12)'~2c2Aor 

x [(el + e$)k,,k,2, + e{kzz] exp i(k,r - Q t )  + C.C. (61) 
It is seen from the relationship (60), that that the magnetic field H,, connected with 

the flexoelectric polarization P,, is small 

s 
C 

IHfJ - - I P f e l ,  

and may therefore be neglected. Consequently, the polarization P,, creates the 
electrostatic longitudinal wave E,, [40] 

rot E ,, = 0, div 9 ,, = 0 (62) 

~),=EIE~,~X+EIIE~,~Z+~~~P~,. (63) 

and 

Combining equations (60), (62) and (63), we find that 

E,,  = - k s I o r f )  hw1w2 
p(l122)'i2c2Aor 

It is seen from (60), (61) and (64), that the flexoelectric polarization, space charge and 
longitudinal electrostatic field have a form identical to that of the SS wave and are 
travelling in the direction determined by k,. The amplitudes of the waves P,,, Q,,, E,, 
are proportional to the intensity I, of the EM waves 

5. Conclusions 
We now summarize the main results obtained. It is demonstrated that coupling 

through the SS may give rise to a strong parametric amplification of one EM wave at 
the expense of another. The amplitudes of the incident and scattered EM waves and the 
amplitude of the SS are calculated explicitly. The signal and pumping waves undergo 
amplification with saturation and depletion, respectively. The light stimulated SS wave 
creates the waves of the flexoelectric polarization and the space charge. Numerical 
estimates show that the gain per unit intensity at  the stimulated scattering on SS in 
S,LCs is one or two orders of magnitude greater than that of stimulated Brillouin 
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Two-wave mixing in smectic A liquid crystals 171 

scattering on ordinary sound in isotropic organic liquids. The scattering on SS occurs 
without a change of the SALCs mass density. In terms of [41), such a scattering may be 
described as a new kind of two-wave mixing in a Kerr medium, with the specific 
mechanism of a Kerr effect due to the smectic layer deformations. The gain depends on 
the material parameters of SALCS such as the Leslie viscosity coefficients cq, the elastic 
constant B, and the dielectric constant anisotropy E,, as well as on the intensity, 
polarization and propagation direction of the coupled EM waves. Therefore, the 
stimulated scattering on SS may be used for the experimental investigation of the high- 
frequency hydrodynamics of S,LCs in the presence of a strong external field. 

The theoretical results obtained in the present article may be applied as a basis for 
such an investigation. 

We thank J. Katriel for his useful remarks. One of the authors (B.L.) is indebted to 
B. Ya Zel’dovich, N. V. Tabiryan and E. V. Gurovich for fruitful discussions. 
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